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LSND Result
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Explanation for Am? problem?
1. LSND interpretation may be wrong
-confirm or refute with MiniBooNE ) Solar MSW
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Beam and Detector

MiniBooNE is searching for an excess of v, in a vV, beam

in
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Protons: 4E12 protons per 1.6 us

pulse, at a rate of 3 - 4 Hz from
Fermilab Booster accelerator, with
E=8.9 GeV

)
s

Mesons: mostly ", produced in p-
Be collisions, + signs focused in
horn. 50m decay region.

Number of v /0.05 GeV /

Neutrinos: 450 m soil berm before B ’ G Vﬁ.
the detector hall. Intrinsic Vv, flux ~ v ( C
0.4% x v, flux. Beam v,8 from: (B.K.)

Tt = (99.99%)

+ 0
Detector: 1280 PMTs, 250,000 K= (63%)
gallons of mineral oil, Cherenkov Beam v s from:
and scintillation light. 240 PMTs - o
in optically 1solated veto region. w = (99.99%)
Kf— (5%)

KO —> (39%)

Jocelyn Monroe, MIT Aspen, page 3



Pion Production

n" prediction comes from a fit to " production data from E910, HARP experiments (p, = 6-12 GeV/c)

. .. HARP P, . _=8.9GeV
Fit uses Sanford-Wang parameterization of pea

inclusive meson production in p-Be collisions
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HARP " data at 8.9 GeV/c beam momentum

shown (right) with prediction and error,
data has excellent phase space coverage for
MiniBooNE (below)
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n” similarly parameterized, but comprise
negligible contribution to neutrino flux
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Kaon Production

K+ prediction comes from a fit to K* production data from past experiments ( = 10-24 GeV/c)

Fit uses a parameterization based on Feynman
scaling (developed by MiniBooNE)

K+ data from past experiments, scaled to 8.9
GeV/c beam momentum, shown with prediction
and error (right), data has reasonable phase
space coverage for MiniBooNE (below)

Aleshin Data (9.5 GeVic)
Allaby Data (19.2 GeVic)
Dekkers Data (188, 23.1 GeVic)
Lundy Data (13.4 GeV/c)
Marmer Data (123 GeV/c)
Vorontsov Data (10.1 GeV/ic)
Abbott Data (14.6 GeV/c)
Piroue Data (2.74 GeVic)
< Eichten Data (24 GeVic) U
MiniBooNE MC: K' with v indetector acceptance =~ 4o o
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K9 similarly parameterized, but comprise much
smaller background than K+
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Neutrino Cross Sections

¢ CC/NC
quasi-elastic

scattering (QE)
42% /16%

¢ CC/NC
resonance

production (1)
25% 1 7%

MiniBooNE is here, ¢ multi-t /DIS
has world's largest data set, production
will publish os in all of these channels ~13%

Cross Section Predictions from NUANCE Monte Carlo event generator:
variety of theoretical models for exclusive processes, joined smoothly to reproduce
the total CC cross section data, with model parameters tuned on free-nucleon data

2
1 2MLE, — n,

Use CCOE events for oscillation analysis signal channel: ES* =

2 M, —E,+\/(Ei —mZ) cos8,

Jocelyn Monroe, MIT Aspen, page 6



Reconstruction and Particle ID

PR et e =t SO

20 40 . 6:3
Time (ns)

Reconstruction:
PMTs collect Vs, record t and q, o

fit time and angular distributions to find tracks

Final State Particle Identification:
muons have sharp rings due to Cherenkov emission, long tracks
electrons have fuzzy rings, from multiple scattering, and short tracks

neutral pions decay to 2 Ys, which convert and produce two fuzzy rings,
easily mis-identified as electrons if one ring gets lost!
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NuMI “Calibration Beam”

We need to verify our PID with v, in the signal energy range, but we are doing a blind analysis.
Solution: use someone else’s beam!

|Det. 2 |
NuMI Tunnel Project FermM 10 km Soudan

730 km +| ‘4_
12 km

The NuMI beam to
MINOS in Minnesota

Sitting off axis, we see a beam which is enhanced in v,

and is in a useful energy range.
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Signal Event Selection #1

Method #1: to find V, CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. eliminate muons by requiring 1 sub-event in time
3. employ Boosted decision tree discriminant

placement of cut determined by requiring 99.9% rejection of v, CC, 99% rejection of 7tY, ~50% v . CC efficiency
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“calibration beam” data shown here is from the MiniBooNE detector and the NuMI beam,
which is out of time, off-axis, enhanced in v, and spans the relevant energy range
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Signal Event Selection #2

Method #2: to find V, CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. eliminate muons by requiring 1 sub-event in time
3. employ Boosted decision tree discriminant or cut on e-u and e-m likelihood variables to eliminate mis-IDs

placement of cuts determined by requiring 99.9% rejection of v, CC, 99% rejection of 7tY, ~50% v . CC efficiency

—

Data ¢ Data

——— Monte Carlo
Expected NC n°

—— Expectedv,

Expected v, (no NC 9
PRELIMINARY

Monte Carlo

Expected NC =°
Expected v,

Events per bin
Events per bin

Expected v, (no NC =°)
PRELIMINARY
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“calibration beam” data shown here is from the MiniBooNE detector and the NuMI beam,
which is out of time, off-axis, enhanced in v, and spans the relevant energy range
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Signal Extraction

Raster scan in (Am?, sin220), calculate

iy = Number of messured data events 1 bin 2

f, = Number of predicted events in bin :

) Nbins Npins | (t ¢ Funeti f AmZ. gin®
— i events are a function of Am~, sin” 20,
X — Z Z (ml o tl) M;] (m] o t]) M ;1' Inwerse of the covariance matrix
i—1 j—1

what we predict for the existing data set (5.3E20 protons on target)...

PRELIMINARY

Oscillation v,
\ Example oscillation signal
- Am?=1el?

- SINZ220 = 0.004

Fit for excess as a function of

reconstructed v, energy

oo

0.5 . 2.5 3
EnuQE (GeV)
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Signal Extraction

Raster scan in (Am?, sin220), calculate

iy = Number of messured data events 1 bin 2

f, = Number of predicted events in bin :

) Nbins Npins | (t ¢ i f AmZ. gin®
— i events are a function of Am~, sin” 20,
X — Z Z (ml - tl) M;] (m] o t]) M, ' = Imnverse of the covariance matrix
i—1 j—1

what we predict for the existing data set (5.3E20 protons on target)...

PRELIMINARY v, from K™ and K©°

Use High energy v, and v
for normalization

u

Use fit to kaon production
data for shape

oo

25 3
EnuQE (GeV)
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Signal Extraction

Raster scan in (Am?, sin220), calculate

iy = Number of messured data events 1 bin 2

f, = Number of predicted events in bin :

) Nbins Npins | (t ¢ i f AmZ. gin®
— i events are a function of Am~, sin” 20,
X — Z Z (ml - tl) M;] (m] o t]) M, ' = Imnverse of the covariance matrix
i—1 j—1

what we predict for the existing data set (5.3E20 protons on target)...

v, from u+
PRELIMINARY

Vu
p+Be :rc< Ve
<
v, €

Measured with v, CCQE
sample

- Same ancestor "
kinematics

Most important background

oo

2.5 3 - Constrained to a few %
EnuQE (GeV)

Jocelyn Monroe, MIT Aspen, page 13




Signal Extraction

Raster scan in (Am?, sin220), calculate

iy = Number of messured data events 1 bin 2

f, = Number of predicted events in bin :

Npins Npi .
2 SR M_l (t; events are a function of Am®, sin® 20,
X o Z Z (ml - tl) ij (m.] o t]) .‘..’,;1' Imrverse of the covarance matrix
i—1 j—1

what we predict for the existing data set (5.3E20 protons on target)...

MisID v,

~83% iV

- Only ~1% of all ¥ are
misIDed

PRELIMINARY

Determined by clean mt°

measurement
~T7% Ay decay

- Use clean

measurement
to estimate A production

~10% other

- Usev, CCQE rate to

0.5 ] 2.5 3 normalize and MC for
EnuQE (GeV) shape

oo
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Signal Extraction

Raster scan in (Am?, sin220), calculate

N bins N bins

=Y, ) (mi—5) M (mj—1;)
i—1 j—=1

iy = Number of messured data events 1 bin 2

f, = Number of predicted events in bin :

B - =
|_II events are a function of Am=,

Iovverse of the covanance matr

what we see for the existing data set (5.3E20 protons on target)...

PRELIMINARY

oO

25
EnuQE (GeV)
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i 249,

1X

High energy v, data

(relatively normalized)

Events below ~1.5 GeV still

“in the box”

we are doing a “closed box”
analysis in order to obtain the

most convincing result!

- 1solate data with the
signature for v —v
u e

- use the rest (99%) to
calibrate and constrain

Aspen, page 15



Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale
- PMT response

- optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
- neutrino cross section nuclear model parameters
- t° rate constraint

2. constraining systematic errors with neutrino data "l think you should be more

- combined oscillation fit to high-statistics explicit here in step two."
v, data set and Ve oscillation data set

- example: v, from u decay background

Jocelyn Monroe, MIT



Michel electron enerav

Analysis Strategy ¢~

~ resolution

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale LI
- energy extrapolation Cosmic Muon Energy
- PMT response n
- optical model of light propagation in the detector

e Data
- Monte Carlo
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Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale
- PMT response
- optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
- neutrino cross section nuclear model parameters

- it° rate constraint

2. constraining systematic errors with neutrino data "l think you should be more

- combined oscillation fit to high-statistics explicit here in step two."
v, data set and Ve oscillation data set

- example: v, from u decay background

Jocelyn Monroe, MIT



v,, CCQE Event Selection

To find VM CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. tag muons by requiring 2 sub-events in time, with distance between < 1m
3. employ Fisher discriminant to get rid of CClmt background
- "single muon final state hypothesis" for inputs (proton ~invisible)
result: 91% CCQE purity, ~100k events

e T ) ) LTy - Data

transverse fraction “w"’m“uh{ ——— MC tOtal
PRELIMINARY - - - MC bgnd

ok ki) i ot Iy
0 0102 03 04 05 08 07 08 08 o 10 20 30 40 S50 &0 TO &0 90 100 . 0. 03 04 05 08 A
mwan hypothesisienergy michel vartex location cherenkav fraction
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CCQE Cross Section

The v, CCOE data Q° distribution is fit to tune empirical parameters of the nuclear model ('>C target)

8000 |

C this results in good data-MC agreement for
7000 | = variables not used in tuning

5 , PRELIMINARY
6000 | . MC before fit

3 _ MC after fit | PRELIMINARY
5000 | -__ */ndf=4.7/13

4000 |

:--,f.*

3000 |

2000 |

1000 |

_I\I\lll\l‘\ll\l\\\\ll\\\‘ll\\‘\lll‘\\Ill\l\llll\l\
OO 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

Q0 (GeV?)

the tuned model is used for both v, and v, CCQE,
the only difference between these is lepton mass
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i° Mis-ID Background

0 0

events are used to tune the MC rate vs. ©° momentum

PRELIMINARY clean 1

vents/(5 Mev/c'))
Iy
S
=)

E
_-
=
=]
S

this results in good data-MC agreement for
variables not used in tuning

28,600 Fitted ©° Events

Reconstructed
70 Mass 21800

A 1600

1400

1200

1000
e e s m 200
600
400

200

+ Data
-+ Monte Carlo
Corrected MC

49
%f‘

.
PRELIMINARY -

HF: ¢

_.i._..'":..:
o
_sethi
AP T

%

TTT

-0.5 0 0.5 1
cos BW

1
—_

2000 |+
1500
1000 *

500 -

70 events can reconstruct outside of the

invariant mass peak when:

1. asymmetric decays fake 1 ring | |

2. 1 of the 2 photons exits the detector 2 TS y 02 04 06 08 1
3. high momentum nt°® decays produce overlapping rings cos B_
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Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale
- PMT response
- optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
- neutrino cross section nuclear model parameters

- 7t° rate constraint

2. constraining systematic errors with neutrino data " think you should be more

- combined oscillation fit to high-statistics explicit here in step two."
v, CCQE data set and v, oscillation data set

- example: v, from u decay background

Jocelyn Monroe, MIT



u™-Decay v, Background

CCQE events can infer the t* spectrum, which constrains u*-decay|v_ & m'-decay vV, flux predictions

€

how to implement u*-decay v, background constraint:

1. simulation based on external data predicts a central
value and some range of possible VM(J'C) fluxes

2. make Data/MC ratio vs. EVQE for the VMCCQE data set,

3. reweight each possible MC flux by the ratio from (2)
including the Vi the parent it*, the sister u*,
and the niece v,

Jocelyn Monroe, MIT

— P
L 11 1111 111 1 L1 11 1111 IIIIIIIII
B W - S -

this works well because the v, energy is
highly correlated with the parent " energy




u"-Decay v, Background

Impact of reweighting the simulation using “fake data” (MC):

a set of possible

v (u) fluxes
from 7" prediction
uncertainties,

not reweighted

0

Jocelyn Monroe, MIT

v(w) Before Cuts: E MC (GeV)

a set of possible
v, (u") fluxes

from 7t prediction
uncertainties,

reweighted

| = R R R

i
Reweighted v (1) Before Cuts: E MC (GeV)

1

2

3 4 5 6

this reduction in the spread of possible fluxes translates directly

into a reduction in the W'-decay v, background uncertainty




Combined Fit Example

Fit the E 9F distributions of v, and v  events for oscillations, together
u

Raster scan in Am? ,and and sin226ue (sin226”x == (),

calculate X ? value over v, and v, bins

Osc v, (1.0 eV, 0.004)

v from K

B v- fromp

* P v from
+ [ KA from x

+ - fake data
T

%ﬁ{

N bins N bins

=) ) (m

i=1 j=1

For this example, systematic error matrix M, . includes

predicted wt” flux uncertainties only, for v, and v, bins
1.5 2 2.5 3

Reconstructed E, (GeV)

IIIIIIIIIIII|IIII|IIII|IIII
v, fromx
vpfromK
« fake data

"n_

For this example, m, = "fake data" = MC with no oscillation signal

1| | | | | | I | | 1 11 | | I 1 1
. . L . B 1 1-5 2 2-5 3
combined fit constrains uncertainties common to v, and v, Reconstructed E, (GeV)
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Combined Fit Example

Example fit result for n* flux errors

To calculate an oscillation sensitivity curve:

confidence 2
level 1. assume no signal in the data, therefore best-fit
allowed '
regions -

from LSND X (SUCh that m; = ti)

point is always at SinZZBW = 0 for all Am? values

2. calculate X ? for all (Am?, Sin226ue)’
Npins Npins
2 —1
=Y, Y (mi—t;) M7 (mj—t))
i=1 j=1

3. find sin226ue where A x 2= x2-x .2=1 for

min

each Am?, systematic errors come in via A ) ?

. ¥
s~ 28 (v — v 0
Ll I:
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Combined Fit Example

Example fit result for n* flux errors

MiniBooNE
, , 90% confidence
confidence | level sensitivity
level ' 7 limit with:
allowed f {7
regions
from LSND

. ¥
sin~ 20 (v, =V}
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Combined Fit Example

Example fit result for n* flux errors

MiniBooNE
, , 90% confidence
confidence | level sensitivity
level ' 7 limit with:
allowed f {7
regions
from LSND

. ¥
s~ 28 (v — v 0
Ll I:
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Combined Fit Example

Example fit result for n* flux errors

MiniBooNE
._ 90% confidence
confidence 33 level sensitivity
level limit with:
allowed
;SgrlgrisSND A\ G & statistical errors only

n" flux errors from prediction,
v, fit only

- =7t" flux errors from reweighted
prediction, v _fit only

Jocelyn Monroe, MIT



Combined Fit Example

Example fit result for n* flux errors

: il MiniBooNE
90, 90% confidence
confidence 3% level sensitivity
level limit with:
allowed '»
regions
from LSND

n* flux errors from prediction,

fit only

- =7t" flux errors from reweighted
prediction, v _fit only

n* flux errors from prediction,
combined v, and v _fit

T

. 3
sim~ 20 (v, — x::h

Jocelyn Monroe, MIT



Summary and Outlook

Of course, there are many other sources of systematic error as well...

Am?® (eVv )

MiniBooNE 5.0E20

(90 Z CL, 30 and 50) |

10 10
sin?218

Summary of systematic error sources:

1. neutrino flux predictions
-ntt, v, KT, K-, K% n, and p total and
differential cross sections
- secondary interactions
- focusing horn current
- target + horn system alignment

2. neutrino interaction cross section predictions
- nuclear model
- rates and kinematics for relevant exclusive processes
- resonance width and branching fractions

3. detector modelling
- optical model of light propagation in oil
- PMT charge and time response
- electronics response
- neutrino interactions in dirt surrounding detector hall

MiniBooNE expected sensitivity covers LSND 90% C.L. allowed region at -3¢

Jocelyn Monroe, MIT
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Summary and Outlook

Incorporating the v, data set provides a valuable constraint for the v, appearance oscillation search.

- uncertainty on v, from u decay is highly constrained
. combined fit naturally incorporates v, data constraint for all sources of systematic error

. can constrain and cross-check -~all of the v_and v, backgrounds with in-situ data

MiniBooNE

is close to the finish line,
oscillation results soon!

Jocelyn Monroe, MIT






Optical Model Tuning

The optical model describes light propagation in the detector:

laser calibration - scattering, flourescence, and extinction

{ External measurements &} - Cherenkov and scintillation emission
- PMT detection efficiency

Mar05

Nov05 (extinction)
Apr06 (scintillation)
May06 (fluorescence)

{ Outward (U e r > 0.5)

[ First calibration ]
with michels

-
-
(9}

[Calibraﬁon of scim‘illa’rion]
light with NC events

-_—
—

Ratio of Michel Mean E (MC/Data)

[}
[}
[}
[}
[}
[}
A
[}
[}
[}
[}
[}
[}
[}
[}
AL
[}
[}
[}
[}
[}
[}
[}
[}
L
i

0
Reconstructed R (x Sign of Uer) [cm]

This is hard: need wavelength, angular, and time dependence + normalization for each process!




Boosting

““A procedure that combines many weak classifiers to form a powerful committee”

a decision tree that is forced to try harder on mis-classified events e and ek dtiue

signal(red) and background(blae) . Hﬂ\"%.
saa

000 4000 000 =000

as0 Stancu_chiqgrec
B
100

o

o

o,

/.if::immmwmmm 9755/23695

Stancu_chiqrec

signal(red) and background(blue)
2000

S B

30.245/16.305 = g\\\
1906711828 7849/11867

A set of decision trees can be developed

This tree is not unique!

S B
20455/3417

Each data event is then sent through the full set of trees.
For each tree, the data event is assigned

+1 if it is identified as signal,

-1 if it 1s identified as background.

The total for all trees is then combined. =9
The resulting “score” for the event
can be thought of as a probability that it is signal.

H. Yang, B. Roe, J. Zhu, “Studies of Boosted Decision Trees for MiniBooNE Particle Identification”, Nucl.Instrum.Meth.A555; 370-385 (2005)
B. Roe et. al. “Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification” Nucl.Instrum.Meth.A543; 577-584 (2005)
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