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MiniBooNE Motivation: LSND Result 

Signals:
Solar: Δm 2 ~ 10 -5 eV 2
(SNO, KamLAND, ...)

Atmospheric: Δm 2 ~ 10 -3 eV 2  

(Super-K, K, ...)

Accelerator: Δm 2 ~ 10 0 eV 2
(LSND)

Explanation for Δm2 problem?
1. LSND interpretation may be wrong
 -confirm or refute with MiniBooNE
2. Add sterile neutrinos: 1, 2, 3 ...
3. (More) exotic possibilities

3 νs allow
only 2 
independent 
values of Δm 2

ν Oscillations                                                weak eigenstates (νe, νµ, ντ)  ≠  mass eigenstates (ν1, ν2, ν3) 
                                                                       parameters Δmi,j

2 = |mi
2−mj

2|,  sin22θij,  i,j=1,3

         2-ν oscillation probability:
m2

m3

m1
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Protons: 4E12 protons per 1.6 µs 
pulse, at a rate of 3 - 4 Hz from 
Fermilab Booster accelerator, with
E=8.9 GeV        

Mesons: mostly π+, produced in p-
Be collisions, + signs focused in 
horn.  50m decay region.   

Neutrinos: 450 m soil berm before 
the detector hall.  Intrinsic νe flux ~ 
0.4% x νµ flux.  

Detector: 1280 PMTs, 250,000 
gallons of mineral oil, Cherenkov 
and scintillation light.  240 PMTs 
in optically isolated veto region.  

Beam νes from:
 µ+       e+ νe νµ   (99.99%) 
 K+       π0 e+ νe   (5%) 
 K0

L      π± e± νe                 (39%)
 

PRELIMINARY

Beam νµs from:                                (B.R.)

 π+   µ+ νµ   (99.99%) 
 K+       µ+ νµ  (63%) 
 

MiniBooNE Overview: Beam and Detector
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MiniBooNE is searching for an excess of  νe  in a νµ beam
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MiniBooNE Beam: Pion Production

Fit uses Sanford-Wang parameterization of 
inclusive meson production in p-Be collisions

HARP π+  data at 8.9 GeV/c beam momentum 
shown (right) with prediction and error,
data has excellent phase space coverage for 
MiniBooNE (below)                          

π- similarly parameterized, but comprise 
negligible contribution to neutrino flux

π+ prediction comes from a fit to π+ production data from E910, HARP experiments (pp = 6-12 GeV/c)
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MiniBooNE Beam: Kaon Production

Fit uses a parameterization based on Feynman 
scaling (developed by MiniBooNE)

K+  data from past experiments, scaled to 8.9 
GeV/c beam momentum, shown with prediction 
and error (right),  data has reasonable phase 
space coverage for MiniBooNE (below)                          

K0 similarly parameterized, but comprise much 
smaller background than K+

K+ prediction comes from a fit to K+  production data from past experiments ( = 10-24 GeV/c)
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MiniBooNE Detector: Neutrino Cross Sections

Cross Section Predictions from NUANCE Monte Carlo event generator: 
variety of theoretical models for exclusive processes, joined smoothly to reproduce 
the total CC cross section data, with model parameters tuned on free-nucleon data  

Use CCQE events for oscillation analysis signal channel:                                    

CC / NC
quasi-elastic 
scattering (QE)
42% / 16%

CC / NC  
resonance 

production (1π)
25% / 7% π+

Δ++

multi-π /DIS 
production
~13% π+π0

π−π-

π0

Δ+

MiniBooNE is here, 
has world's largest data set,

will publish σs in all of these channels

νl

p
Z

Z

νl

p p

EQE
ν =

1
2

2MpEµ−m2
µ

Mp−Eµ +
√

(E2
µ −m2

µ) cosθµ
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MiniBooNE Detector: Reconstruction and Particle ID

PMT

ph
ot

on      
θ

Reconstruction: 
PMTs collect γs, record t and q,
fit time and angular distributions to find tracks

Final State Particle Identification:
muons have sharp rings due to Cherenkov emission, long tracks
electrons have fuzzy rings, from multiple scattering, and short tracks
neutral pions decay to 2 γs, which convert and produce two fuzzy rings,

easily mis-identified as electrons if one ring gets lost!
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     MiniBooNE Detector: NuMI “Calibration Beam”
We need to verify our PID with νe in the signal energy range, but we are doing a blind analysis.

Solution: use someone else’s beam!      

MiniBooNE

Sitting off axis, we see a beam which is enhanced in νe
and is in a useful energy range.

The NuMI beam to
MINOS in Minnesota

Our energy
range of interest

Det. 2

Det. 1
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Method #1: to find νe CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. eliminate muons by requiring 1 sub-event in time
3. employ Boosted decision tree discriminant or cut on e-µ and e-π likelihood variables to eliminate mis-IDs

“electron-like”“other
”

 placement of cut determined by requiring 99.9% rejection of  νµ CC, 99% rejection of π0, ~50% νe CC efficiency

Oscillation Search: Signal Event Selection #1

PRELIMINARY

PRELIMINARY

“calibration beam” data shown here is from the MiniBooNE detector and the NuMI beam, 
which is out of time, off-axis, enhanced in νe, and spans the relevant energy range
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Method #2: to find νe CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. eliminate muons by requiring 1 sub-event in time
3. employ Boosted decision tree discriminant or cut on e-µ and e-π likelihood variables to eliminate mis-IDs

 placement of cuts determined by requiring 99.9% rejection of  νµ CC, 99% rejection of π0, ~50% νe CC efficiency

PRELIMINARY PRELIMINARY

Oscillation Search: Signal Event Selection #2

“calibration beam” data shown here is from the MiniBooNE detector and the NuMI beam, 
which is out of time, off-axis, enhanced in νe, and spans the relevant energy range
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2 m! Hi e"Osc 
 from Kaonse"

µ from e"

# from e"

 misIDµ", µ"other 
 Decay! µ"

0# NCµ"

HE data

what we predict for the existing data set (5.3E20 protons on target)...

Raster scan in (Δm2, sin22θ), calculate 

Oscillation νe

Example oscillation signal
–  Δm2 = 1 eV2

– SIN22θ = 0.004
Fit for excess as a function of 
reconstructed νe energy

Oscillation Search: Signal Extraction

PRELIMINARY

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)
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HE data

what we predict for the existing data set (5.3E20 protons on target)...

Raster scan in (Δm2, sin22θ), calculate 

νe from K+  and K0

Use High energy νe and νµ 
for normalization

Use fit to kaon production 
data for shape

Oscillation Search: Signal Extraction

PRELIMINARY

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)

Jocelyn Monroe, MIT                                                                                                                                                                                                     Aspen,  page 12



EnuQE (GeV)
0 0.5 1 1.5 2 2.5 30

20

40

60

80

100

120

EnuQE (GeV)
0 0.5 1 1.5 2 2.5 30

20

40

60

80

100

120

2 m! Hi e"Osc 
 from Kaonse"

µ from e"

# from e"

 misIDµ", µ"other 
 Decay! µ"

0# NCµ"

HE data

what we predict for the existing data set (5.3E20 protons on target)...

Raster scan in (Δm2, sin22θ), calculate 

νe from µ+

Measured with νµ CCQE 
sample

– Same ancestor π+ 
kinematics

Most important background
- Constrained to a few %

                             νµ      
p+Be         π+                           νe

                          µ+

                                    νµ e+

Oscillation Search: Signal Extraction

PRELIMINARY

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)
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HE data

what we predict for the existing data set (5.3E20 protons on target)...

Raster scan in (Δm2, sin22θ), calculate 

MisID νµ

~83% π0

– Only ~1% of all π0s are 
misIDed

– Determined by clean π0 
measurement

~7% Δ γ decay 
– Use clean π0 measurement 

to estimate Δ production

~10% other

– Use νµ CCQE rate to 
normalize and MC for 
shape

Oscillation Search: Signal Extraction

PRELIMINARY

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)

Jocelyn Monroe, MIT                                                                                                                                                                                                     Aspen,  page 14



EnuQE (GeV)
0 0.5 1 1.5 2 2.5 30

20

40

60

80

100

120

EnuQE (GeV)
0 0.5 1 1.5 2 2.5 30

20

40

60

80

100

120

2 m! Hi e"Osc 
 from Kaonse"

µ from e"

# from e"

 misIDµ", µ"other 
 Decay! µ"

0# NCµ"

HE data

what we see for the existing data set (5.3E20 protons on target)...

Raster scan in (Δm2, sin22θ), calculate 

High energy νe data
(relatively normalized)

Events below ~1.5 GeV still 
“in the box”     
we are doing a “closed box” 
analysis in order to obtain the 
most convincing result!

-  isolate data with the 
signature for  νµ →νe

-  use the rest (99%) to 
calibrate and constrain 

Oscillation Search: Signal Extraction

PRELIMINARY

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)
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Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale 
- PMT response
- optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
- neutrino cross section nuclear model parameters
- πo rate constraint

2. constraining systematic errors with neutrino data
- combined oscillation fit to high-statistics                      
νµ  data set and νe oscillation data set
- example: νe from µ decay background
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Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale 
- energy extrapolation
- PMT response
- optical model of light propagation in the detector

Michel electron energy 

15% E 
resolution
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Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale 
- PMT response
- optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
- neutrino cross section nuclear model parameters
- πo rate constraint

2. constraining systematic errors with neutrino data
- combined oscillation fit to high-statistics                      
νµ  data set and νe oscillation data set
- example: νe from µ decay background

Jocelyn Monroe, MIT                                                                                                                                                                                                     Aspen,  page 18



Incorporating νµ Data: νµ CCQE Event Selection

To find νµ CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
2. tag muons by requiring 2 sub-events in time, with distance between < 1m
3. employ Fisher discriminant to get rid of CC1π background

● ''single muon final state hypothesis'' for inputs  (proton ~invisible)

ν

µ

p

ν

µ

Δ++

p
π+

 result: 91% CCQE purity, ~100k events

PRELIMINARY

unit-area
normalization

● Data
----  MC total
- - - MC bgnd

p

µ

n

12C
e

νµ

Jocelyn Monroe, MIT                                                                                                                                                                                                     Aspen,  page 19



Incorporating νµ Data: CCQE Cross Section

χ2/ndf = 4.7 / 13

The  νµ CCQE data Q2  distribution is fit to tune empirical parameters of the nuclear model (12C target)

this results in good data-MC agreement for 
variables not used in tuning

the tuned model is used for both νµ and νe CCQE, 
the only difference between these is lepton mass

PRELIMINARY

PRELIMINARY
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Incorporating νµ Data: π0 Mis-ID Background
clean π0 events are used to tune the MC rate vs. π0 momentum

n(p)

γ
12C γ

 π0

νµ

π0 events can reconstruct outside of the 
invariant mass peak when:

1. asymmetric decays fake 1 ring
2. 1 of the 2 photons exits the detector
3. high momentum πo  decays produce overlapping rings

PRELIMINARY

PRELIMINARY

Reconstructed
    π0  Mass

this results in good data-MC agreement for 
variables not used in tuning
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Oscillation Search: Analysis Strategy

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data
- energy scale 
- PMT response
- optical model of light propagation in the detector

1. MC fine-tuning with neutrino data
- neutrino cross section nuclear model parameters
- πo rate constraint

2. constraining systematic errors with neutrino data
- combined oscillation fit to high-statistics                      
νµ  CCQE data set and νe oscillation data set

- example: νe from µ decay background
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νµ CCQE events can infer the π+ spectrum, which constrains µ+-decay νe & π+-decay νµ  flux predictions

  

νµ

µ+
π+

e+

νe

νµ

how to implement µ+-decay νe background constraint:

1. simulation based on external data predicts a central 
 value and some range of possible νµ(π) fluxes

2. make Data/MC ratio vs. Eν
QE for the νµCCQE data set,

3. reweight each possible MC flux by the ratio from (2) 
including the νµ, the parent π+, the sister µ+, 
and the niece νe

Incorporating νµ Data: µ+-Decay νe   Background

E ν
 = 0.43 E π

 

this works well because the νµ energy is  
highly correlated with the parent π+ energy
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   Impact of reweighting the simulation using “fake data” (MC):

    

νe(µ+):  

!e(µ) Before Cuts: E!
MC (GeV)

0

200

400

600

800

1000

0 1 2 3 4 5 6

a set of possible
νe(µ+) fluxes 
from π+ prediction 
uncertainties,

not reweighted

Reweighted !e(µ) Before Cuts: E!
MC (GeV)

0

200

400

600

800

1000

0 1 2 3 4 5 6

Incorporating νµ Data: µ+-Decay νe   Background

a set of possible
νe(µ+) fluxes 
from π+ prediction 
uncertainties,

reweighted

this reduction in the spread of possible fluxes translates directly 
into a reduction in the µ+-decay νe background uncertainty 
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Incorporating νµ Data: Combined Fit Example 
                      Fit the Eν

QE distributions of νe and νµ events for oscillations, together

Raster scan in Δm2 ,and and sin22θµe  (sin22θµx == 0),
calculate χ2 value over νe and νµ  bins  

    

     

For this example, systematic error matrix Mij includes 
predicted π+ flux uncertainties only, for  νe and νµ  bins

          

         Mij = 

For this example, mi = ''fake data'' = MC with no oscillation signal

combined fit constrains uncertainties common to νe and νµ

 (    )νµ

νe

νµ νe

νe νµ 

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)
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90, 99%
confidence
level 
allowed
regions
from LSND

Incorporating νµ Data: Combined Fit Example 

these sensitivities are only examples to illustrate
what the combined fit does

Example fit result for π+ flux errors
      

To calculate an oscillation sensitivity curve:

1. assume no signal in the data, therefore best-fit 
    point is always at sin22θµe = 0 for all Δm2 values
    (such that mi ≅ ti) 

2. calculate χ2  for all (Δm2, sin22θµe),

 

3. find sin22θµe where Δχ2  = χ2 -χmin
2 = 1 for 

    each Δm2, systematic errors come in via Δχ2

    

χ2 =
Nbins

∑
i=1

Nbins

∑
j=1

(mi− ti) M −1
i j (m j− t j)
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90, 99%
confidence
level 
allowed
regions
from LSND  statistical errors only

MiniBooNE
90% confidence
level sensitivity 
limit with:

these sensitivities are only examples to illustrate
what the combined fit does

Incorporating νµ Data: Combined Fit Example 
Example fit result for π+ flux errors

      

Jocelyn Monroe, MIT                                                                                                                                                                                                     Aspen,  page 27



90, 99%
confidence
level 
allowed
regions
from LSND  statistical errors only

MiniBooNE
90% confidence
level sensitivity 
limit with:

these sensitivities are only examples to illustrate
what the combined fit does

Incorporating νµ Data: Combined Fit Example 

π+ flux errors from prediction,
νe  fit only

Example fit result for π+ flux errors
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90, 99%
confidence
level 
allowed
regions
from LSND  statistical errors only

MiniBooNE
90% confidence
level sensitivity 
limit with:

these sensitivities are only examples to illustrate
what the combined fit does

Incorporating νµ Data: Combined Fit Example 

π+ flux errors from reweighted 
prediction, νe fit only

π+ flux errors from prediction,
νe  fit only

Example fit result for π+ flux errors
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90, 99%
confidence
level 
allowed
regions
from LSND  statistical errors only

MiniBooNE
90% confidence
level sensitivity 
limit with:

π+ flux errors from prediction, 
combined νe  and νµ  fit

these sensitivities are only examples to illustrate
what the combined fit does

π+ flux errors from prediction,
νe  fit only

Incorporating νµ Data: Combined Fit Example 

π+ flux errors from reweighted 
prediction, νe fit only

Example fit result for π+ flux errors
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Of course, there are many other sources of systematic error as well... 
    

Summary of systematic error sources:

1. neutrino flux predictions
- π+, π-, K+, K-, K0, n, and p total and

differential cross sections 
- secondary interactions
- focusing horn current
- target + horn system alignment

2. neutrino interaction cross section predictions
- nuclear model
- rates and kinematics for relevant exclusive processes 
- resonance width and branching fractions

3. detector modelling
- optical model of light propagation in oil
- PMT charge and time response
- electronics response
- neutrino interactions in dirt surrounding detector hall

MiniBooNE expected sensitivity covers LSND 90% C.L. allowed region at ∼3σ    

Oscillation Search: Summary and Outlook
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Incorporating the  νµ data set provides a valuable constraint for the νe  appearance oscillation search.

● uncertainty on νe  from µ decay is highly constrained
● combined fit naturally incorporates νµ  data constraint for all sources of systematic error
● can constrain and cross-check ∼all of the νe and νµ backgrounds with in-situ data

MiniBooNE 
is close to the finish line, 
oscillation results soon!

Oscillation Search: Summary and Outlook
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Other Slides



External measurements &
laser calibration

First calibration
with michels

Calibration of scintillation
light with NC events

Final  calibration
with michels

Validation with 
cosmic muons,
νµ events, and 
NuMI νe events

     MiniBooNE Overview: Optical Model Tuning
The optical model describes light propagation in the detector:
      
      - Cherenkov and scintillation emission

- scattering, flourescence, and extinction
- PMT detection efficiency

        This is hard: need wavelength, angular, and time dependence + normalization for each process! 



“A procedure that combines many weak classifiers to form a powerful committee”

     MiniBooNE Overview: Boosting

(NS/NB)

30,245/16,305

9755/23695 

20455/3417 
9790/12888 

1906/11828 7849/11867 

  S        B

BS

  S  B

a decision tree that is forced to try harder on mis-classified events 

This tree is not unique!
A set of decision trees can be developed 

Each data event is then sent through the full set of trees.
For each tree, the data event is assigned 

 +1 if it is identified as signal,

 -1 if it is identified as background.

The total for all trees is then combined.

 The resulting  “score” for the event 

 can be thought of as a probability that it is signal.



H. Yang, B. Roe, J. Zhu, “Studies of Boosted Decision Trees for MiniBooNE Particle Identification”,  Nucl.Instrum.Meth.A555; 370-385 (2005) 
B. Roe et. al. “Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification” Nucl.Instrum.Meth.A543; 577-584 (2005)


