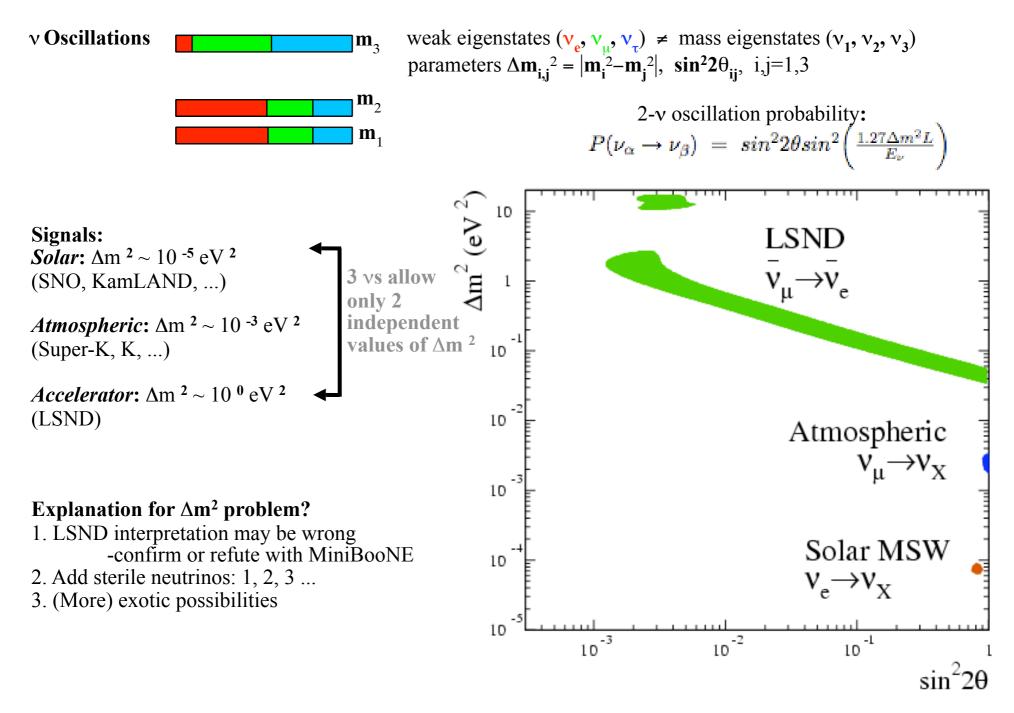


ν_e Oscillation Analysis Progress at MiniBooNE

- 1. Motivation and Overview
- 2. Components of the Oscillation Analysis
- 3. Incorporating Constraints from v_{μ} Data

Jocelyn Monroe, MIT Aspen Winter Conference January 11, 2007

MiniBooNE Motivation: LSND Result

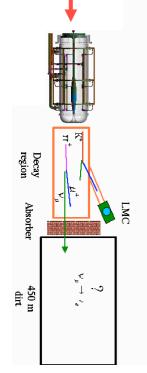


Jocelyn Monroe, MIT

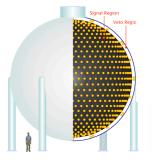
Aspen, page 2

MiniBooNE Overview: Beam and Detector

MiniBooNE is searching for an excess of v_e *in a* v_u *beam*



MiniBooNE Detector

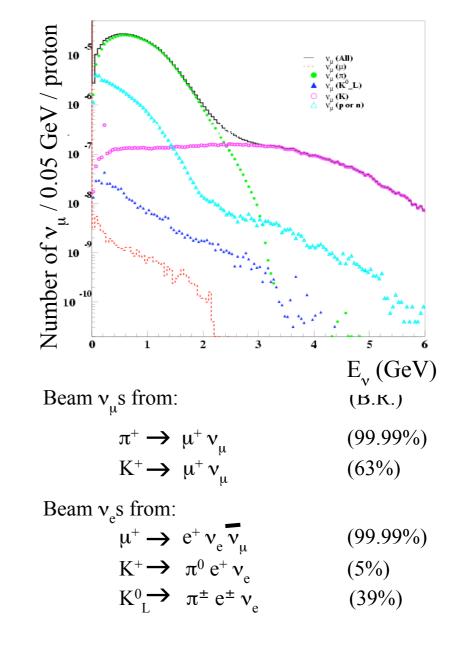


Protons: 4E12 protons per 1.6 µs pulse, at a rate of 3 - 4 Hz from Fermilab Booster accelerator, with E=8.9 GeV

Mesons: mostly π^+ , produced in p-Be collisions, + signs focused in horn. 50m decay region.

Neutrinos: 450 m soil berm before the detector hall. Intrinsic v_e flux ~ 0.4% x v_{μ} flux.

Detector: 1280 PMTs, 250,000 gallons of mineral oil, Cherenkov and scintillation light. 240 PMTs in optically isolated veto region.



MiniBooNE Beam: Pion Production

 π^+ prediction comes from a fit to π^+ production data from E910, HARP experiments ($p_p = 6-12 \text{ GeV/c}$)

HARP Pbeam=8.9GeV Fit uses Sanford-Wang parameterization of 250 inclusive meson production in p-Be collisions θ=45 mrad 200 θ=75 mrad 150 **HARP** π^+ data at 8.9 GeV/c beam momentum 100 shown (right) with prediction and error, 50 data has excellent phase space coverage for d²ơ/dpdΩ, (mb c/(GeV sr)) 200 MiniBooNE (below) 0=105 mrad θ=135 mrad 150 (GeV/c) 10 Data (6.4, 12.3 GeV/c RP Data (8.9 GeV/c 100 ... ส์ 50 1 200 0.8 0=165 mrad 0=195 mrad 150 0.6 100 0.4 50 0.2 2 5 2 5 1 з -0.6 p,(GeV) p,(GeV)

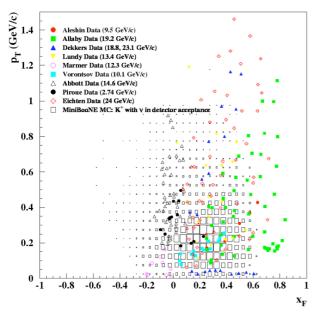
 π^{-} similarly parameterized, but comprise negligible contribution to neutrino flux

MiniBooNE Beam: Kaon Production

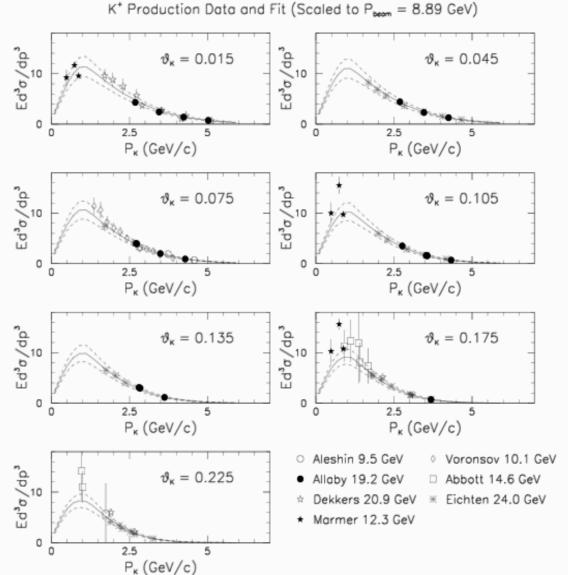
K+ *prediction* comes from a fit to K^+ production data from past experiments (= 10-24 GeV/c)

Fit uses a parameterization based on Feynman scaling (developed by MiniBooNE)

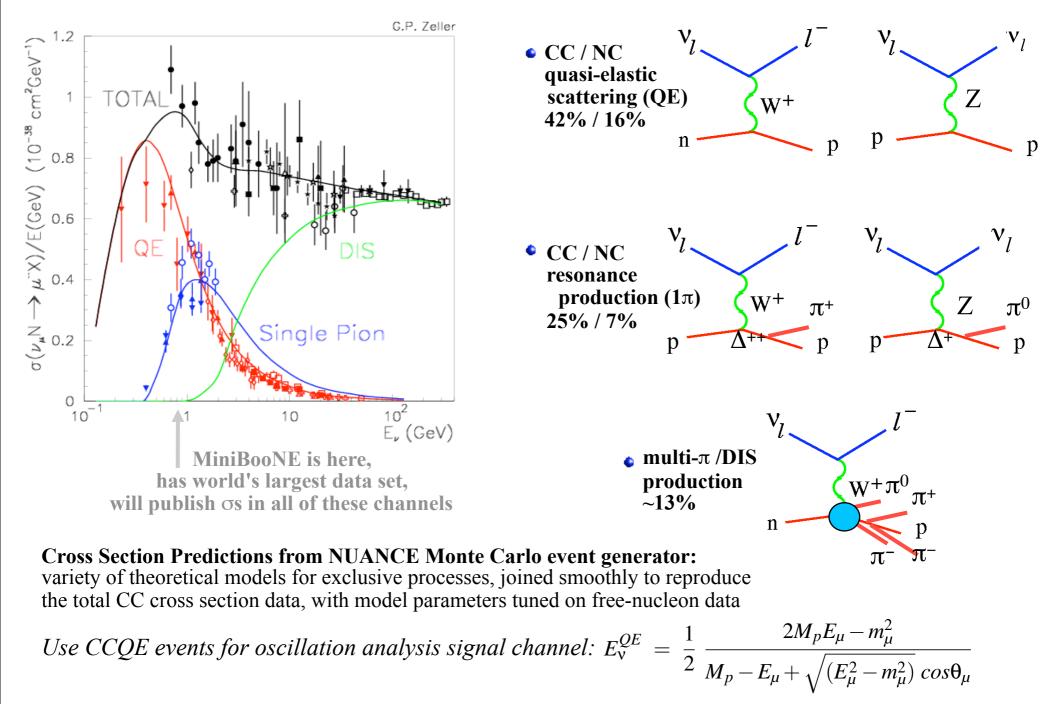
K+ data from past experiments, scaled to 8.9 GeV/c beam momentum, shown with prediction and error (right), data has reasonable phase space coverage for MiniBooNE (below)



K⁰ similarly parameterized, but comprise much smaller background than K⁺



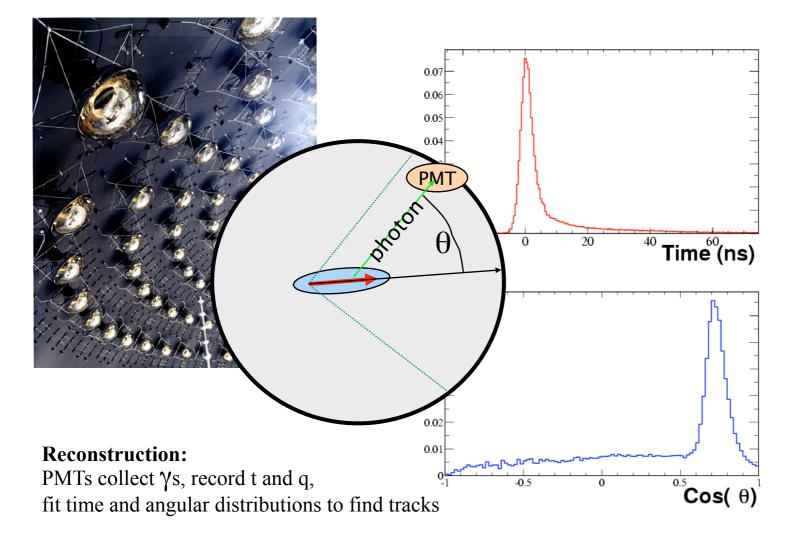
MiniBooNE Detector: Neutrino Cross Sections



Jocelyn Monroe, MIT

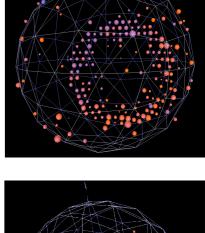
Aspen, page 6

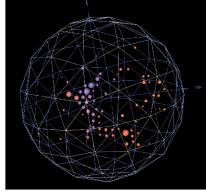
MiniBooNE Detector: Reconstruction and Particle ID

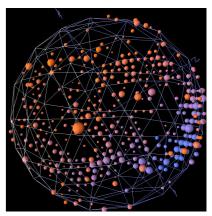


Final State Particle Identification:

muons have sharp rings due to Cherenkov emission, long tracks electrons have fuzzy rings, from multiple scattering, and short tracks neutral pions decay to 2 γ s, which convert and produce two fuzzy rings, *easily mis-identified as electrons if one ring gets lost!*

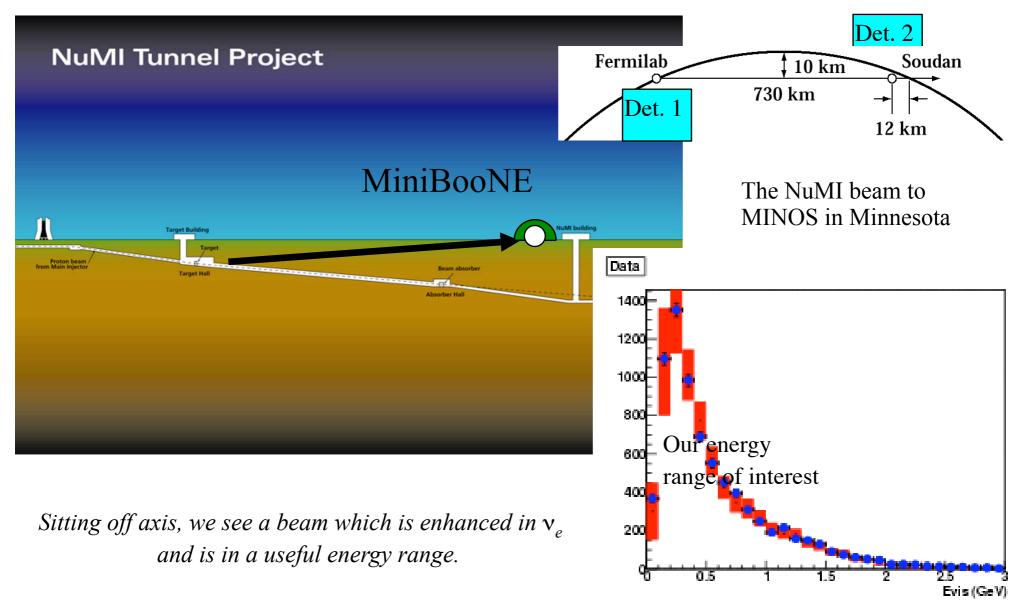






MiniBooNE Detector: NuMI "Calibration Beam"

We need to verify our PID with v_e in the signal energy range, but we are doing a blind analysis. Solution: use someone else's beam!

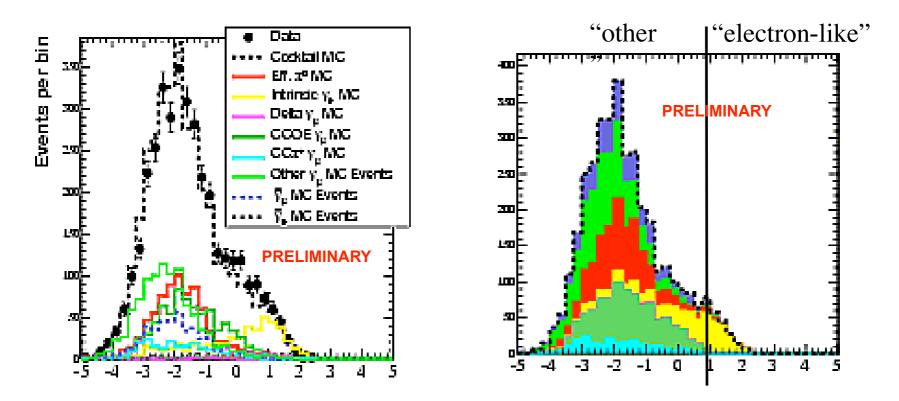


Aspen, page 8

Oscillation Search: Signal Event Selection #1

Method #1: to find v_e CCQE final state:

- 1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
- 2. eliminate muons by requiring 1 sub-event in time
- 3. employ Boosted decision tree discriminant *or* cut on e- μ and e- π likelihood variables to eliminate mis-IDs placement of cut determined by requiring 99.9% rejection of ν_{μ} CC, 99% rejection of π^{0} , ~50% ν_{e} CC efficiency

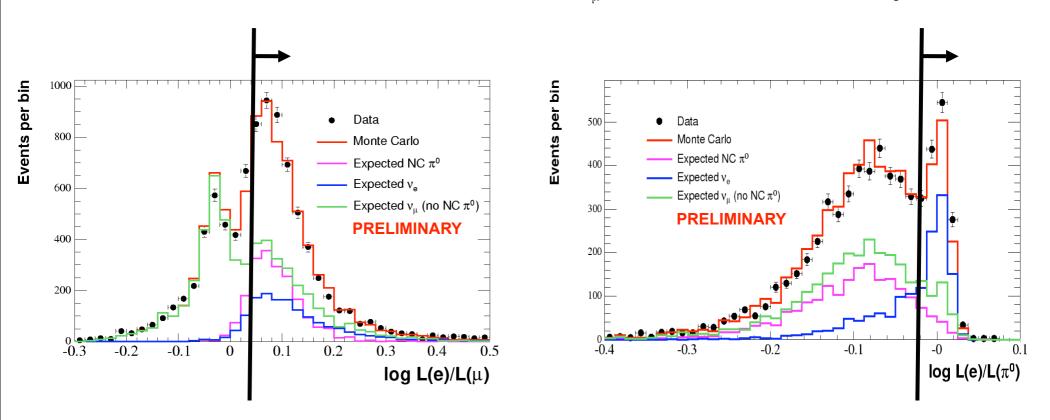


"calibration beam" data shown here is from the MiniBooNE detector and the NuMI beam, which is out of time, off-axis, enhanced in v_e , and spans the relevant energy range

Oscillation Search: Signal Event Selection #2

Method #2: to find v_e CCQE final state:

- 1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics
- 2. eliminate muons by requiring 1 sub-event in time
- 3. employ Boosted decision tree discriminant *or* cut on e- μ and e- π likelihood variables to eliminate mis-IDs placement of cuts determined by requiring 99.9% rejection of ν_{μ} CC, 99% rejection of π^{0} , ~50% ν_{e} CC efficiency



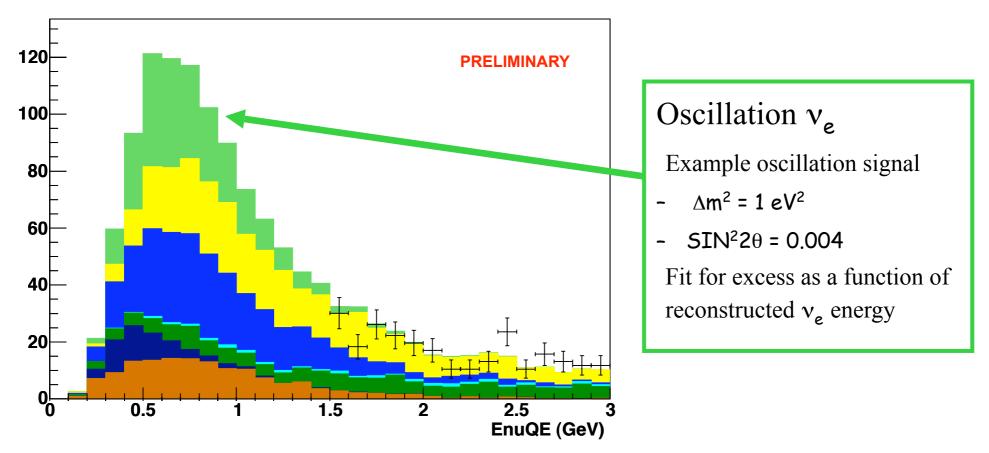
"calibration beam" data shown here is from the MiniBooNE detector and the NuMI beam, which is out of time, off-axis, enhanced in v_e , and spans the relevant energy range

Raster scan in $(\Delta m^2, \sin^2 2\theta)$, calculate

$$\chi^2 = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_i - t_i) \ \mathcal{M}_{ij}^{-1} \ (m_j - t_j)$$

 $m_i =$ Number of measured data events in bin i $t_i =$ Number of predicted events in bin i $(t_i \text{ events are a function of } \Delta m^2, \sin^2 2\theta,$ $M_{ij}^{-1} =$ Inverse of the covariance matrix

what we predict for the existing data set (5.3E20 protons on target)...

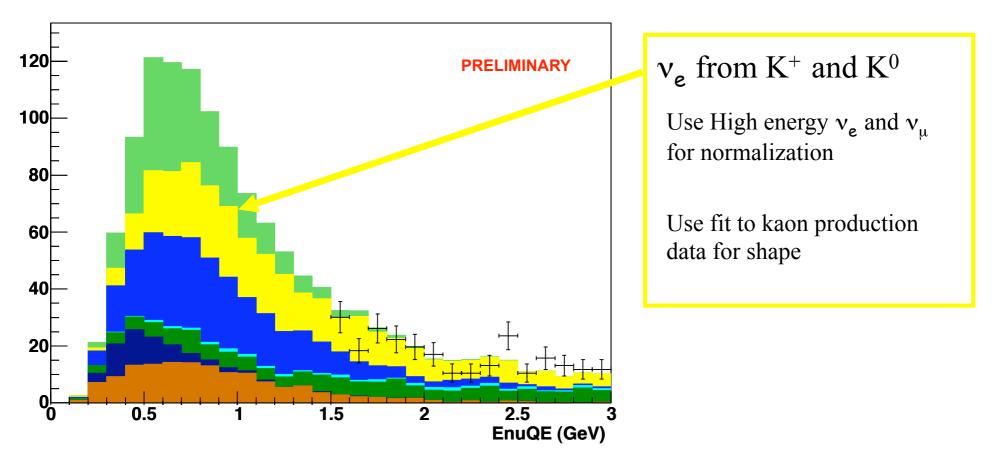


Raster scan in $(\Delta m^2, \sin^2 2\theta)$, calculate

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \mathcal{M}_{ij}^{-1} (m_{j} - t_{j})$$

 $m_i =$ Number of measured data events in bin i $t_i =$ Number of predicted events in bin i $(t_i \text{ events are a function of } \Delta m^2, \sin^2 2\theta,$ $M_{ij}^{-1} =$ Inverse of the covariance matrix

what we predict for the existing data set (5.3E20 protons on target)...

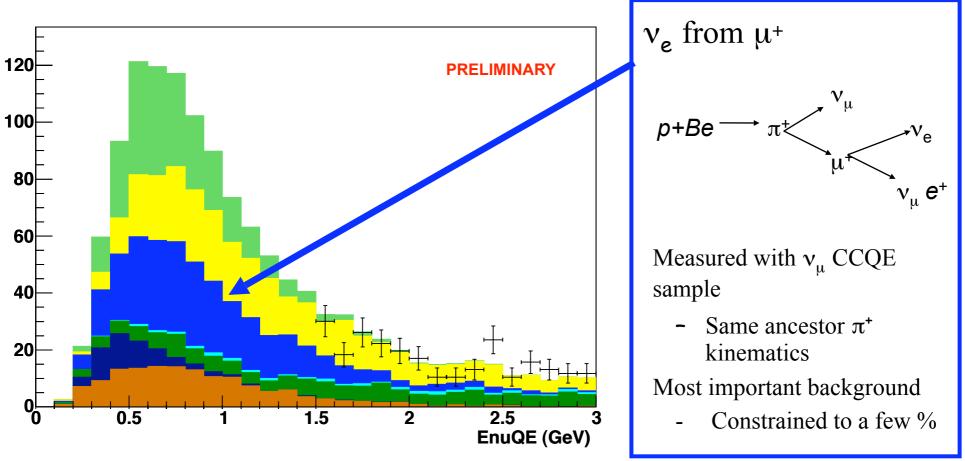


Raster scan in $(\Delta m^2, \sin^2 2\theta)$, calculate

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \mathcal{M}_{ij}^{-1} (m_{j} - t_{j})$$

 $m_i =$ Number of measured data events in bin i $t_i =$ Number of predicted events in bin i $(t_i \text{ events are a function of } \Delta m^2, \sin^2 2\theta,$ $M_{ij}^{-1} =$ Inverse of the covariance matrix

what we predict for the existing data set (5.3E20 protons on target)...



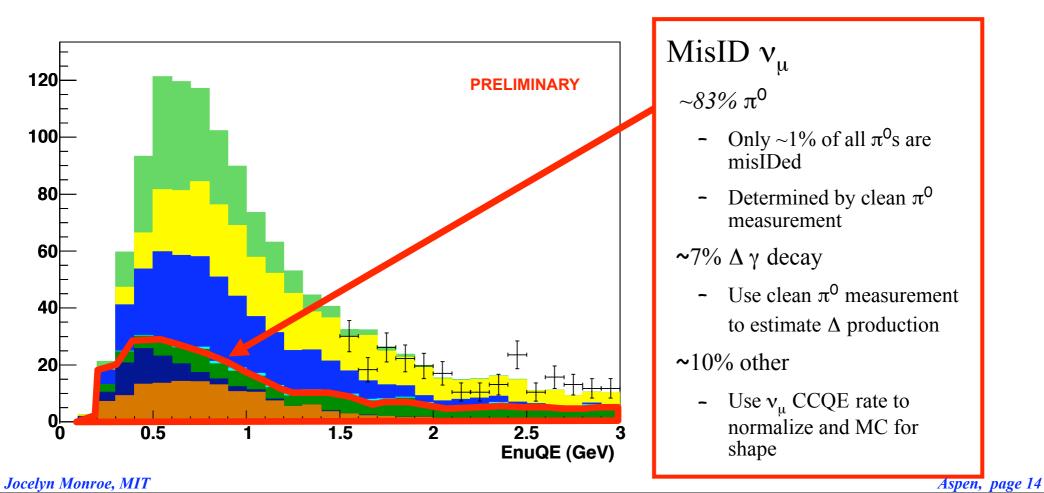
```
Aspen, page 13
```

Raster scan in (Δm^2 , $\sin^2 2\theta$), calculate

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \mathcal{M}_{ij}^{-1} (m_{j} - t_{j})$$

 $m_i =$ Number of measured data events in bin i $t_i =$ Number of predicted events in bin i $(t_i \text{ events are a function of } \Delta m^2, \sin^2 2\theta,$ $M_{ij}^{-1} =$ Inverse of the covariance matrix

what we predict for the existing data set (5.3E20 protons on target)...

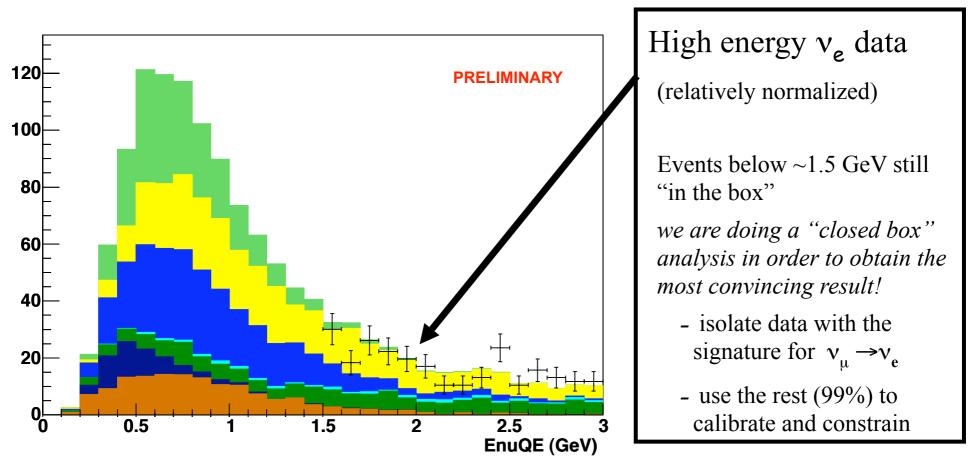


Raster scan in (Δm^2 , $\sin^2 2\theta$), calculate

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \mathcal{M}_{ij}^{-1} (m_{j} - t_{j})$$

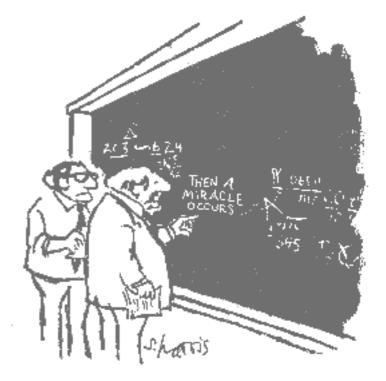
 $m_i =$ Number of measured data events in bin i $t_i =$ Number of predicted events in bin i $(t_i \text{ events are a function of } \Delta m^2, \sin^2 2\theta,$ $M_{ij}^{-1} =$ Inverse of the covariance matrix

what we see for the existing data set (5.3E20 protons on target)...



in-situ data is incorporated wherever possible...

- 0. MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model of light propagation in the detector
- 1. MC fine-tuning with neutrino data
 - neutrino cross section nuclear model parameters
 - π^{o} rate constraint
- 2. constraining systematic errors with neutrino data - combined oscillation fit to high-statistics v_{μ} data set and v_{e} oscillation data set - example: v_{ρ} from μ decay background

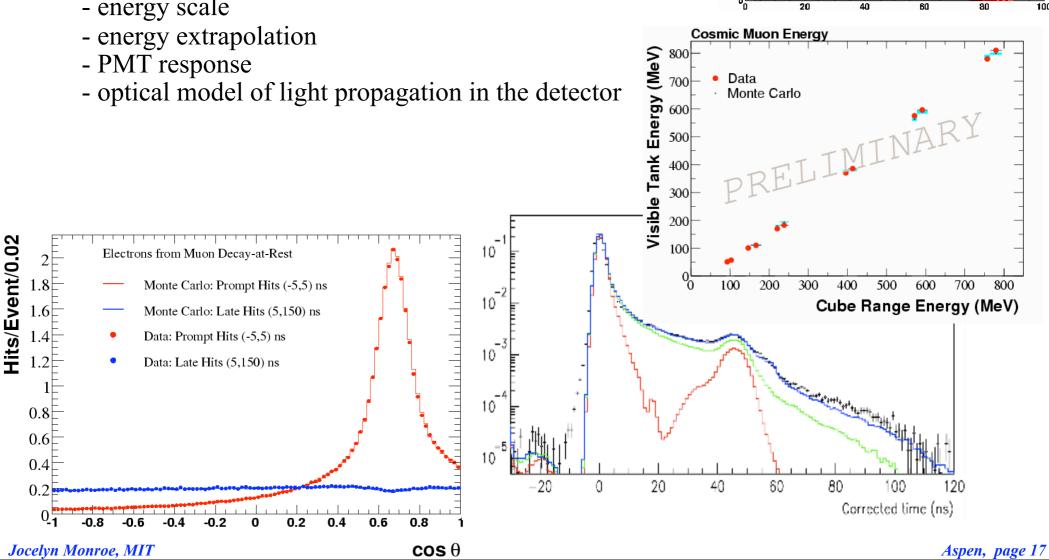


"I think you should be more explicit here in step two."

in-situ data is incorporated wherever possible...

0. MC tuning with calibration data

- energy scale



Michel electron energy

15% E

resolution

\$2500 Huana e

*2000

1500

1000

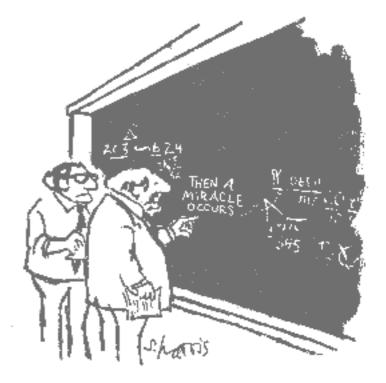
500

in-situ data is incorporated wherever possible...

- 0. MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model of light propagation in the detector

1. MC fine-tuning with neutrino data

- neutrino cross section nuclear model parameters
- π^{o} rate constraint
- 2. constraining systematic errors with neutrino data - combined oscillation fit to high-statistics v_{μ} data set and v_{e} oscillation data set - example: v_{ρ} from μ decay background



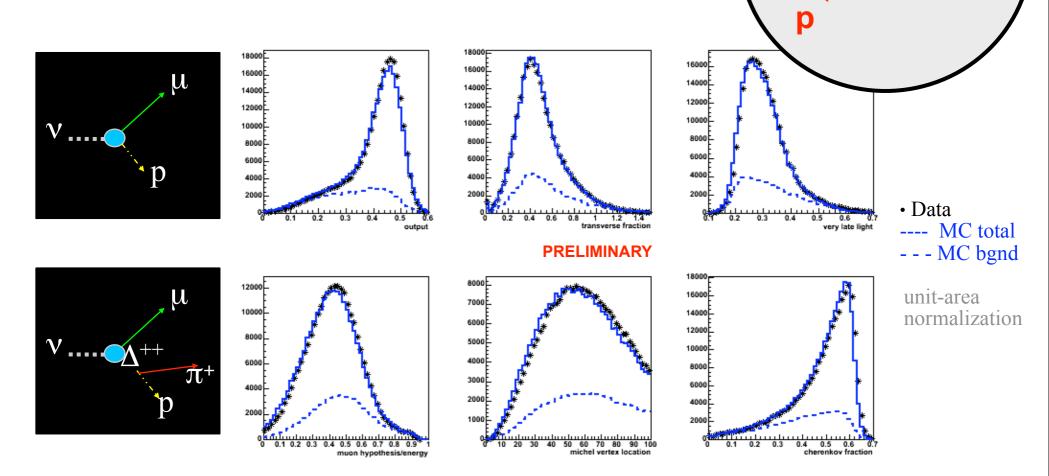
"I think you should be more explicit here in step two."

Incorporating v_{μ} Data: v_{μ} CCQE Event Selection

To find ν_{μ} CCQE final state:

1. apply simple cuts on event time and number of hit PMTs to eliminate cosmics

- 2. tag muons by requiring 2 sub-events in time, with distance between < 1m
- 3. employ Fisher discriminant to get rid of $CC1\pi$ background
 - "single muon final state hypothesis" for inputs (proton ~invisible) result: 91% CCQE purity, ~100k events

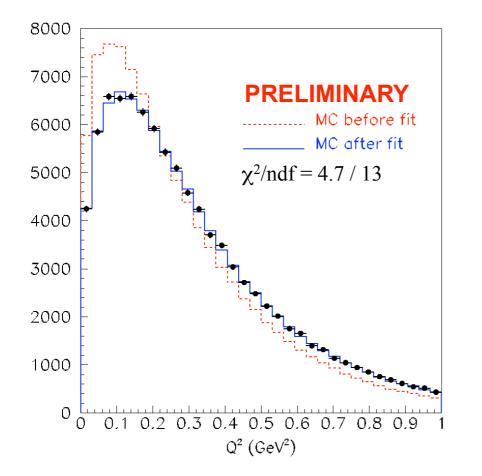


12C

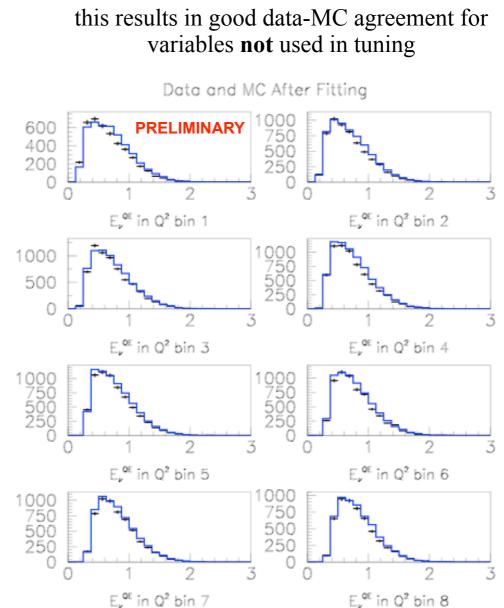
μ

Incorporating v_{μ} **Data:** CCQE Cross Section

The $v_{\mu}CCQE$ data Q^2 distribution is fit to tune empirical parameters of the nuclear model (¹²C target)

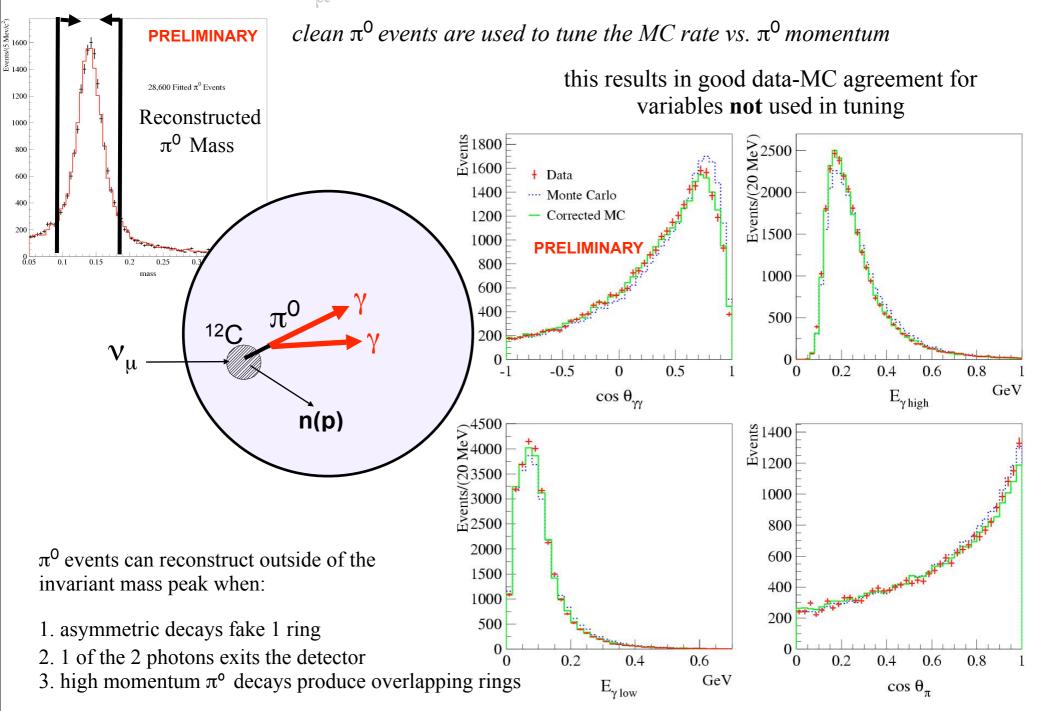


the tuned model is used for both ν_{μ} and ν_{e} CCQE, the only difference between these is lepton mass



Aspen, page 20

Incorporating v_{μ} **Data:** π^{0} **Mis-ID Background**



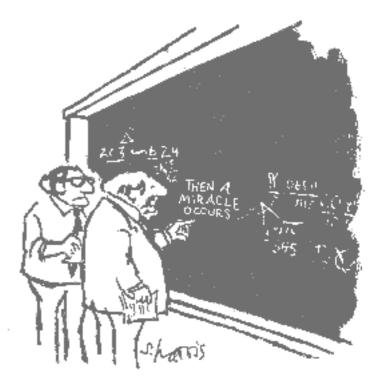
Aspen, page 21

in-situ data is incorporated wherever possible...

- 0. MC tuning with calibration data
 - energy scale
 - PMT response
 - optical model of light propagation in the detector
- 1. MC fine-tuning with neutrino data
 - neutrino cross section nuclear model parameters
 - π^{o} rate constraint

2. constraining systematic errors with neutrino data

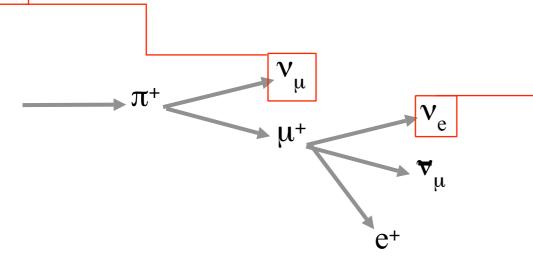
- combined oscillation fit to high-statistics
- ν_{μ} CCQE data set and ν_{e} oscillation data set
 - example: v_e from μ decay background



"I think you should be more explicit here in step two."

Incorporating v_{μ} **Data:** μ^+ **-Decay** v_e **Background**

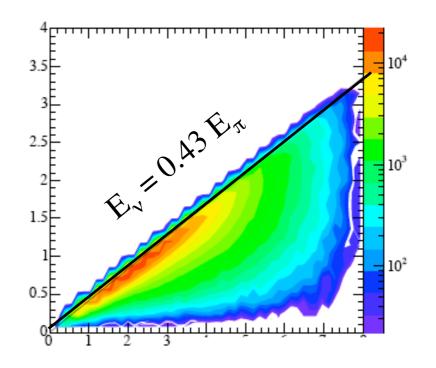
 v_{μ} CCQE events can infer the π^+ spectrum, which constrains μ^+ -decay $v_e \& \pi^+$ -decay v_{μ} flux predictions



how to implement $\mu^{+}\text{-}\text{decay}\,\nu_{e}$ background constraint:

1. simulation based on external data predicts a central value and some range of possible $v_{\mu}(\pi)$ fluxes

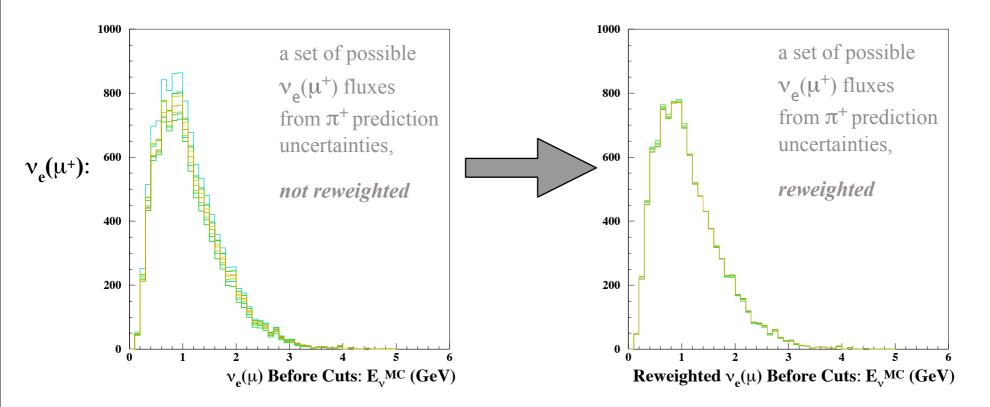
- 2. make Data/MC ratio vs. E_{ν}^{QE} for the ν_{μ} CCQE data set,
- 3. reweight each possible MC flux by the ratio from (2) including the v_{μ} , the parent π^+ , the sister μ^+ , and the niece v_e



this works well because the v_{μ} energy is highly correlated with the parent π^+ energy

Incorporating v_{μ} Data: μ^+ -Decay v_e Background

Impact of reweighting the simulation using "fake data" (MC):



this reduction in the spread of possible fluxes translates directly into a reduction in the μ^+ -decay ν_e background uncertainty

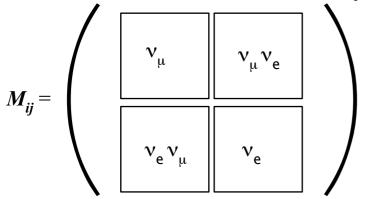
Fit the E_{v}^{QE} distributions of v_{e} and v_{u} events for oscillations, together

Raster scan in Δm^2 , and and $sin^2 2\theta_{\mu e}$ ($sin^2 2\theta_{\mu x} == 0$), calculate χ^2 value over v_e and v_{μ} bins

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \mathcal{M}_{ij}^{-1} (m_{j} - t_{j})$$

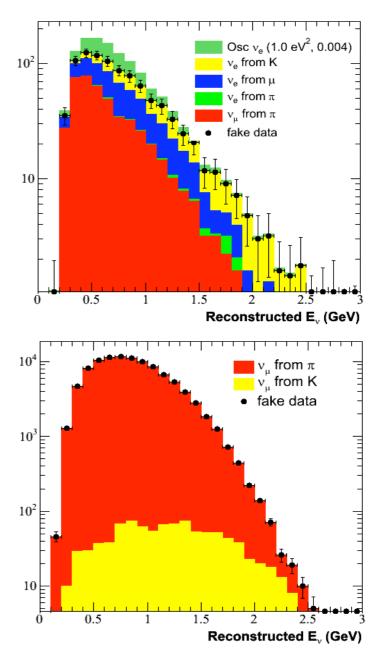
For this example, systematic error matrix M_{ij} includes

predicted $\pi^{\scriptscriptstyle +}$ flux uncertainties only, for $\,\nu_e^{\phantom i}$ and $\nu_\mu^{\phantom i}$ bins



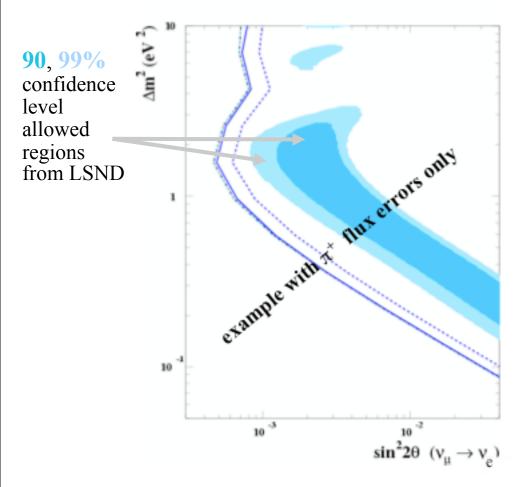
For this example, $m_i =$ "fake data" = MC with no oscillation signal

combined fit constrains uncertainties common to v_{μ} and v_{μ}



Aspen, page 25

Example fit result for π^+ *flux errors*



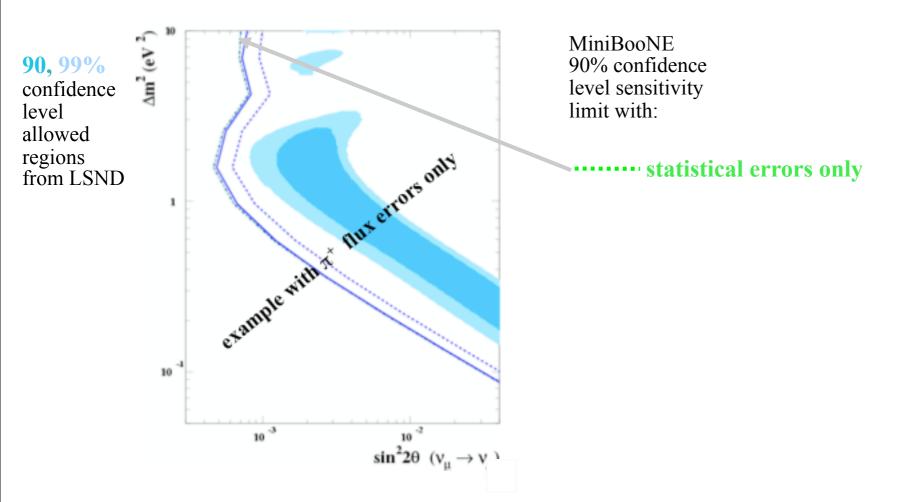
To calculate an oscillation sensitivity curve:

1. assume no signal in the data, therefore best-fit point is always at $sin^2 2\theta_{\mu e} = 0$ for all Δm^2 values (such that $m_i \cong t_i$)

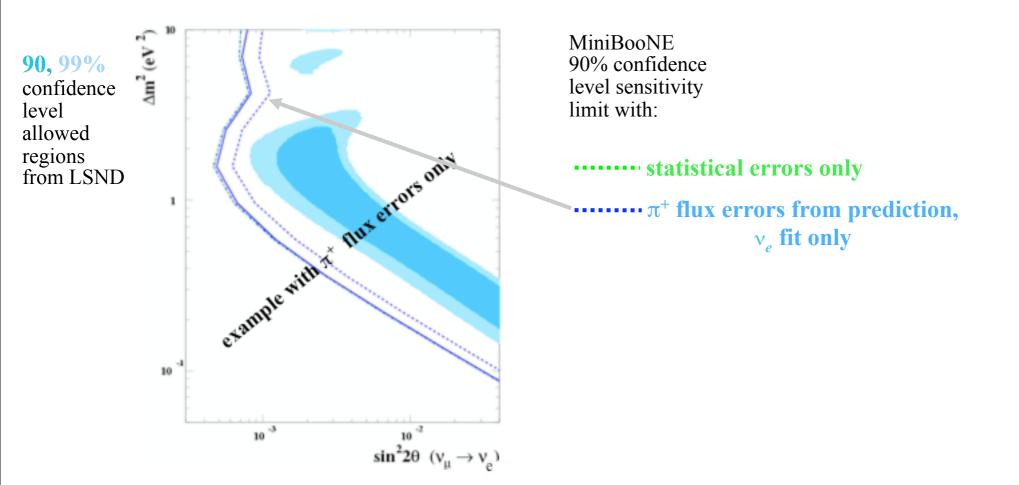
2. calculate
$$\chi^2$$
 for all $(\Delta m^2, sin^2 2\theta_{\mu e})^{\gamma}$
 $\chi^2 = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_i - t_i) \mathcal{M}_{ij}^{-1} (m_j - t_j)$

3. find $sin^2 2\theta_{\mu e}$ where $\Delta \chi^2 = \chi^2 - \chi_{min}^2 = 1$ for each Δm^2 , systematic errors come in via $\Delta \chi^2$

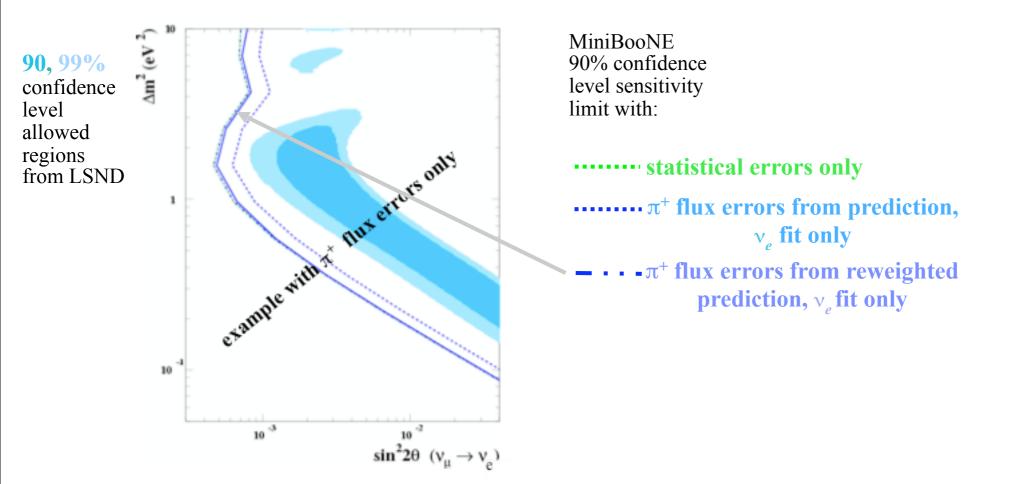
Example fit result for π^+ *flux errors*



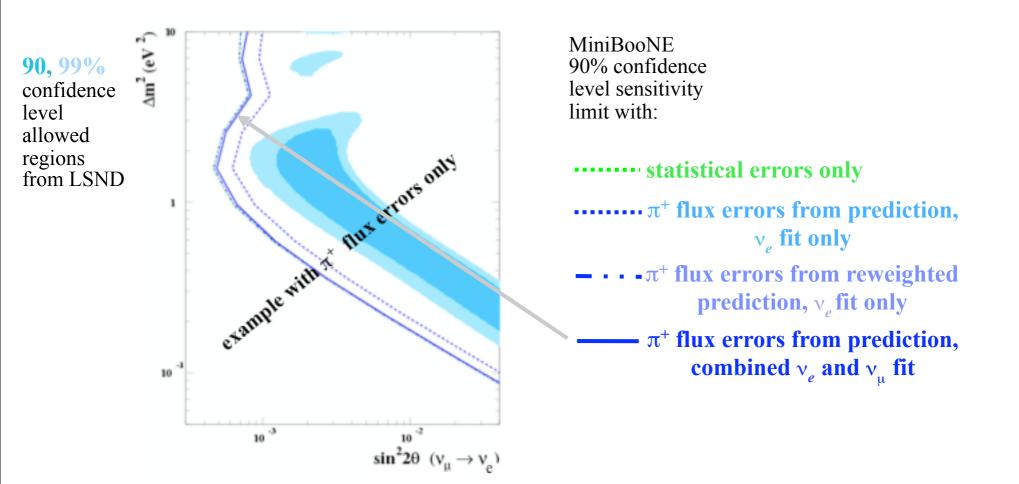
Example fit result for π^+ *flux errors*



Example fit result for π^+ *flux errors*

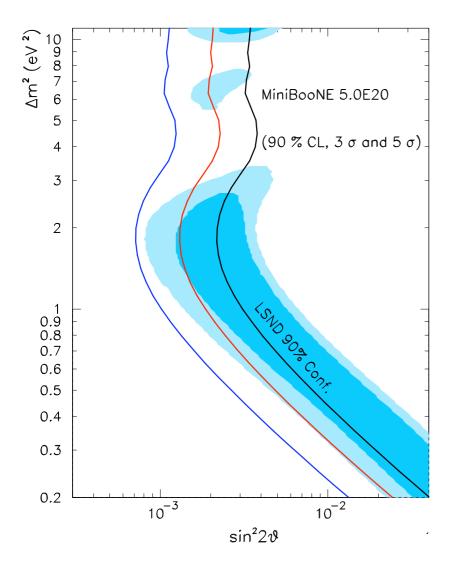


Example fit result for π^+ *flux errors*



Oscillation Search: Summary and Outlook

Of course, there are many other sources of systematic error as well...



Summary of systematic error sources:

- neutrino flux predictions

 π⁺, π⁻, K⁺, K⁻, K⁰, n, and p total and differential cross sections
 secondary interactions
 focusing horn current
 target + horn system alignment
- 2. neutrino interaction cross section predictions
 - nuclear model
 - rates and kinematics for relevant exclusive processes
 - resonance width and branching fractions
- 3. detector modelling
 - optical model of light propagation in oil
 - PMT charge and time response
 - electronics response
 - neutrino interactions in dirt surrounding detector hall

MiniBooNE expected sensitivity covers LSND 90% C.L. allowed region at ~3σ

Oscillation Search: Summary and Outlook

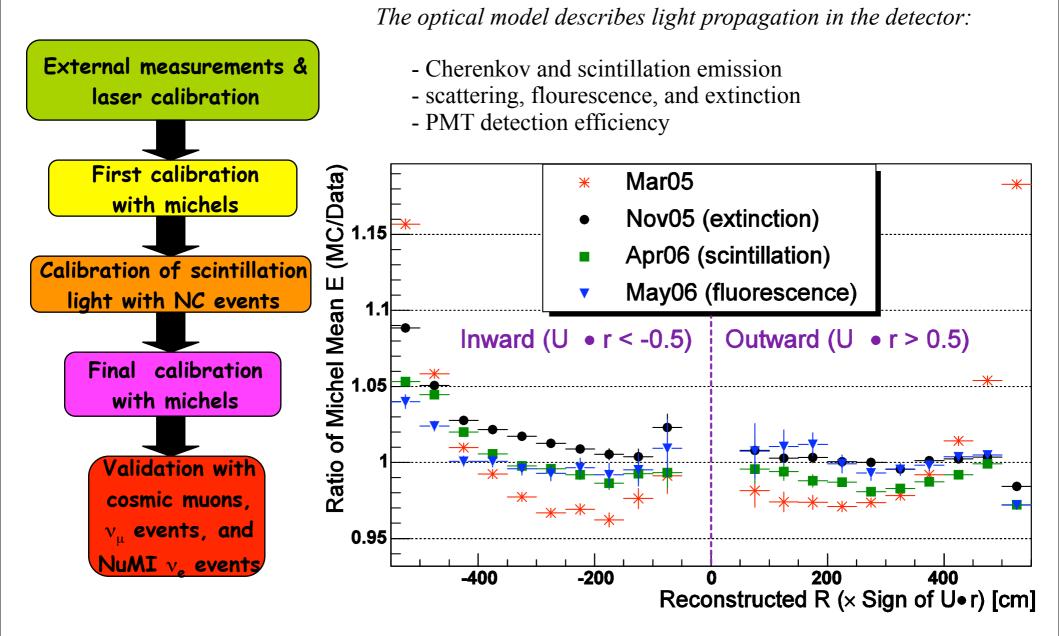
Incorporating the v_{μ} data set provides a valuable constraint for the v_{e} appearance oscillation search.

- uncertainty on v_e from μ decay is highly constrained
- combined fit naturally incorporates v_{μ} data constraint for all sources of systematic error
- can constrain and cross-check ~*all* of the v_e and v_{μ} backgrounds with in-situ data

MiniBooNE is close to the finish line, oscillation results soon!

Other Slides

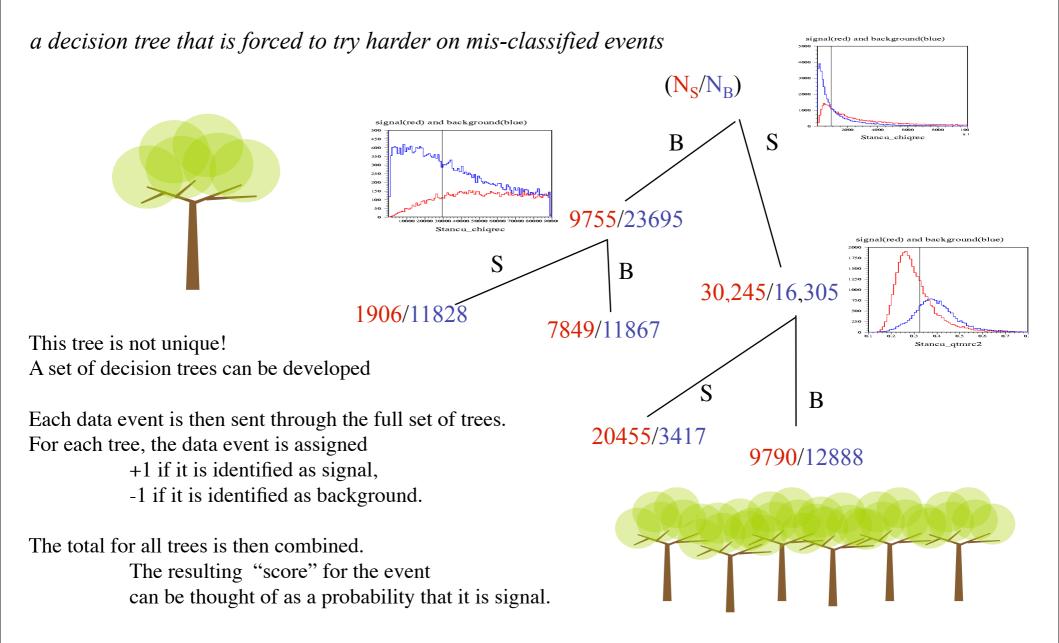
MiniBooNE Overview: Optical Model Tuning



This is hard: need wavelength, angular, and time dependence + normalization for each process!

MiniBooNE Overview: Boosting

"A procedure that combines many weak classifiers to form a powerful committee"



H. Yang, B. Roe, J. Zhu, "Studies of Boosted Decision Trees for MiniBooNE Particle Identification", Nucl.Instrum.Meth.A555; 370-385 (2005) B. Roe et. al. "Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification" Nucl.Instrum.Meth.A543; 577-584 (2005)